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ABSTRACT

The regular and Mach reflections of 330 kilobar shocks in aluminum

have been studied using a high resolution, Lagrangian, two-dimensional,

numerical hydrodynamic code of the MAGEE type. The numerical results

compare favorably with the available experimental data.
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I.

in

in

INTRODUCTION

Numerous experimental and theoretical studies of shock reflection

gases are available.
1-7

The interaction of colliding detonation waves

condensed explosives has also been studied experimentally by several
8-1o

.-
investigators. A1’Tshuler et al.ll have experimentally studied the

regular and Mach reflections of shocks in aluminum. We have used a two-

dimensional Lagrangian hydrodynamics code called 2DL12 to study numeri-

cally the ssme system that was experimentally studied by the Russians.

The numerical.results compare favorably with the Russian experimental

data.

II. COMPUTATIONAL METHOD

The MAGEE finite difference analogs of the Lagrsngian equations of

motion of a compressible fluid, developed in Group T-5 during the last

15 years, were used. The particular version of this method used has

been described by the author.12 The equation of state parameters used

for aluminum were identical to those described in reference 12.

The problems we are concerned with in this report me exemplified

by an applied pressure boundary (hereafter called a piston) with a 330

kilobar pressure normally incident upon one side (which we have taken as

bottom) of an sluminum rhombohedron with one reflective side (which we

have taken as the left side) and the other sides of semi-infinite extent.

Thus the problem becomes a two-dimensionsl one in the Cartesian coordi-

nates X and Z.

The problems discussed in this report had ‘jOcells elong the X

direction and 250 cells along the Z direction. They were run for 1000

cycles, and required approximately 4 hours of IBM 7030 (STRETCH) time

each.

length

The Lagrangian cells

sides (0.05 cm) with

were parallelepipedsor rhombuses of equsl

slopes adjusted to give the desired shock

7



collision angle a. A sketch of the mesh is shown below.

Continuative /

,Continuative

Reflective

III. COLLIDING SHOCKWAVES

Figure 1 shows the computed isobars, Figure 2 the computed isopycnics,

and Figure 3 the cell corners (which show fluid distortion) for 330 kilo-

bar shocks in sluminum with a 33.7” collision angle. Regular reflection

occurs.

Figure 4 shows the computed isobars, Figure 5 the computed isopycnics,

and Figure 6 the cell corners for 330 kilobar shocks in eluminum with a

63.4° collision angle. Mach reflection occurs.

Figure 7 shows the computed isobars, and Figure 8 the cell corners

for 330 kilobar shocks in aluminum with a 50° collision angle. Mach

reflection occurs.

The computed growth

sion angle a is shown in

data.ll The error flags

angle IIof the stem as a tiction of the colli-

Figure 9, compared with the Russian experimental

attached to the calculated values are conse-

quences of the cell size, of a smeared shock, and of the curvature of the

Mach stems.

The computed peak pressure in the reflected shock or Mach stem as

a function of collision angle

Russian experimental data.
11

a is shown in Figure 10,compared with the

The calculated criticsl angle is larger

8
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than the one reported by the Russians. The flat-topped wave approxima-

tion used in the calculations may be responsible for this difference.

Roger Taylor of GMX-11 took PHERME#3 radiographs of a system of

two P-40 lenses and two pads of Composition B, 4 in. x 4 in. X 8 in.

long, detonated”simultaneously in contact with a wedge of aluminum. The

radiographs were taken after the shock wave had traveled 1 in. into the

aluminum. The radiographs were taken along a direction parallel to the

intersection of the colliding waves. This provided the density distri-

bution in the interaction region. The x-ray pulse was produced by a

burst of 26 MeV electrons impinging on a 3 mm diemeter tungsten target

resulting in radiation intensities up to 2 roentgens at the aluminum

wedge, which was positioned on the beam axis approximately 3 meters from

the target. The x-ray film was placed approximately 0.75 meters behind

the eluminum wedge in a protective aluminum case. Fi~e 11 shows the

radiograph obtained for regular reflection of two shock waves with a

33.7° collision angle and Figure 12 shows the radiograph obtained for

Mach reflection of two shock waves with a 50° collision angle. The Mach

stem is approximately 0.5 cm wide with a growth angle of 4°, which agrees

with the Russian expertiental data and the calculations presented in this

report. The density gradients shown in the radiographs are closely repro-

duced by the calculations. The radiographs do not show the high density

zones trailing the interaction points that were observed for colliding

detonation waves.9

Neither the Russian experiments nor the ones used in the PHERMEX

experiments gave flat-topped shock waves as assumed in the calculations.

S. D. Gardner of this Laboratory is presently investigating this effect

and has an experimental method for producing flat-topped shock waves that

should give better data with which to compare the calculations described

in this report. In particular it should yield a better experimental.

criticsl angle for comparison with the calculated value. Considering the

resolution of the calculations and of the experimental.data, the calcu-

lations are in satisfactory agreement with the experimental evidence.

9



Iv. COLLIDING DETONATION WAVES

These results have encouraged us to undertake a study of colliding

detonation waves with resolved reaction zones. fieliminary results of

our study of the interaction of nitromethane detonation waves have

yielded both regular and Mach reflection of detonation waves with resolved

reaction zones for nitromethane. Nitromethane with a 40 keel/mole acti-
14

vation energy was used so as to have a stable detonation. Additional

studies of two-dimensional.stability and reflection of detonation waves

are in progress.

r

v. CONCLUSIONS

The results of computations of the regular and Mach reflection of

330 kilobar shocks in eluminum using a two-dimensional, Lagrangian,

numerical hydrodynamic model compare favorably with the available exper-

imental data.

The calculated Mach stems are not well described by the ususl simple

three-shock model. They have significant curvature and hence are better

described as a multiple-shock process with a slip region rather than a

three-shock process with a slip plane. The absence of a slip plane

density discontinuity in the radiographs is experimental evidence of the

validity of the cad.culationelmodel. The calculated growth angle of the

Mach stem increases with increasing collision angle up to at least 89°,

which is the largest angle for which calculations were performed. A

sharp discontinuity in the stem growth angle as a function of collision

angle occurs at or near 90°.

.
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Figure 1. The computed igobars at 5 Usec for 330 kilobar shocks i?
aluminum with a 33.7° collision angle. Regular reflection
occurs. The region at Z = 6.o between the 900 ~d the 35°

isobars is a result of the shock smear caused by the
artificial ~scositY”
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T)IE TIME 1S 1. OIJ!NJO*OOO MI CROSECC+UIS ANO THE CYCLE NUMBER IS 2.09000.002

Figure 3. The computed positions of the Lagrangian cell corners at 1, 2,
3, 4, and 5 psec for the problem described in Figure 1. The X
axis is 2.5 cm long and the Z axis is 16.25 cm long. The dis-
tortion on the right side at late time results from the inter-
action of the reflected shock with the continuative boundary.
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Figure 3 continued.
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Figure 5. The computed isopycnics for the problem described in Figure 4.

21



THE TIME IS 1. IWN30+O130 MI CVISECWS Am THE CVCLE N(JWER IS 2.00000+002

Figure 6. The computed positions of the Lagrangian cell corners at 1, 2,
3, 4, and 5 wsec for the problem described in Figure ~. The X
axis is 2.5 cm long and the Z axis is 13.75 cm long.
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Figure 6 continued.
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Figure 6 continued.
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Figure 6 continued.
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Figure 7. The computed isobars at 5 Usec for 330 kilobar shocks in

sJ.uminumwith a 50° collision angle. Mach reflections occurs.
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Figure 8. The computed positions of the Lagrangian cell corners at 1, 2,
3) 5) and 6 psec
x aXiS iS 2.5 ~

for the problem described in Figure 7. The
long and the Z axis is 14.6 cmlong.
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Figure 8 continued.
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Figure 8 continued.
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Figure 11. The PHERMEX radiograph of the regular reflection of 330
kilobar shocks in aluminum with a 33.7° collision angle.
The initial shot geometry is shown on the first radiograph.
The outline of the shocks has been sketched on the second
radiograph since the reproduction is poor.
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Figure 11 continued.
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Figure 12. The PHERMEx radiograph of the Mach reflection of 330 kilobar
shocks in sluminum with a W“ collision angle. The initial
shot geometry is shown in the first radiograph. The outline
of the shocks has been sketched on the second radiograph
since the reproduction is poor. The third print shows the
stem detail of the second radiograph as obtained using high
contrast photographic processing.
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Figure 12 continued.
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Figure 12 continued.
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